Matrix stiffness-mediated effects on stemness characteristics occurring in HCC cells
نویسندگان
چکیده
Matrix stiffness as an important physical attribute of extracellular matrix exerts significant impacts on biological behaviors of cancer cells such as growth, proliferation, motility, metabolism and invasion. However, its influence on cancer stemness still remains elusive. Here, we explore whether matrix stiffness-mediated effects on stemness characteristics occur in HCC cells. As the substrate stiffness increased, HCC cells exhibited high proportion of cells with CD133(+)/EpCAM(+), high expression levels of CD133, EpCAM, Nanog and SOX2, greater self-renewing ability and oxaliplatin resistance. Simultaneously, their phosphorylation levels of Akt and mTOR, as well as p-4E-BP and SOX2 expressions were also obviously upregulated. Conversely, knockdown of integrin β1 partially attenuated higher stiffness-mediated stemness characteristics in HCC cells, and reversed the phosphorylation levels of Akt and mTOR, and expressions of p-4E-BP and SOX2, suggesting that integrin β1 may deliver higher stiffness signal into HCC cells and activate mTOR signaling pathway. Additionally, mTOR inhibitor suppressed the mTOR phosphorylation level and expression levels of p-4E-BP and SOX2 in HCC cells grown on higher stiffness substrate, as well as depressed their stemness properties significantly, favoring a regulating role of mTOR signaling pathway in matrix stiffness-mediated effects on stemness. In summary, matrix stiffness may be involved in the process of stemness regulation via activating integrin β1/Akt/mTOR/SOX2 signaling pathway. To the best of our knowledge, this study first reveals a novel regulating pathway to direct the stemness characteristics in HCC cells.
منابع مشابه
Higher Matrix Stiffness Upregulates Osteopontin Expression in Hepatocellular Carcinoma Cells Mediated by Integrin β1/GSK3β/β-Catenin Signaling Pathway
Increased stromal stiffness is associated with hepatocellular carcinoma (HCC) development and progression. However, the molecular mechanism by which matrix stiffness stimuli modulate HCC progress is largely unknown. In this study, we explored whether matrix stiffness-mediated effects on osteopontin (OPN) expression occur in HCC cells. We used a previously reported in vitro culture system with t...
متن کاملMaintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling.
Neural progenitor cell (NPC) culture within three-dimensional (3D) hydrogels is an attractive strategy for expanding a therapeutically relevant number of stem cells. However, relatively little is known about how 3D material properties such as stiffness and degradability affect the maintenance of NPC stemness in the absence of differentiation factors. Over a physiologically relevant range of sti...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملIncreased matrix stiffness promotes tumor progression of residual hepatocellular carcinoma after insufficient heat treatment
Aggravated behaviors of hepatocellular carcinoma (HCC) will occur after inadequate thermal ablation. However, its underlying mechanisms are not fully understood. Here, we assessed whether the increased matrix stiffness after thermal ablation could promote the progression of residual HCC. Heat-treated residual HCC cells were cultured on tailorable 3D gel with different matrix stiffness, simulati...
متن کامل